当前位置:科学网首页 > 基金首页 > 核壳结构NiCoPd@GO的可控构筑及其对镁基储氢材料的催化机理研究

国家自然科学基金项目查询

核壳结构NiCoPd@GO的可控构筑及其对镁基储氢材料的催化机理研究

批准号51701043 学科分类金属能源和环境材料 ( E010504 )
项目负责人原建光 负责人职称工程师 依托单位钢铁研究总院
资助金额23.00
万元
项目类别青年科学基金项目 研究期限2018 年 01 月 01 日 至
2020 年 12 月 31 日
中文主题词镁基储氢材料;多元纳米金属;石墨烯;核壳结构;催化机理
英文主题词Mg-based hydrogen storage materials;multiple metal nanoparticles;graphene;core-shell structure;catalytic mechanism

摘要

中文摘要 镁基储氢材料仍然是研究热点之一,但高的热力学稳定性和较差的吸放氢动力学限制了其实际应用。复合化特别是添加碳和过渡金属是解决问题的有效手段。石墨烯对氢气具有溢流效应,是催化剂的良载体;过渡金属能降低MgH2解离能垒,增加反应活性位点。本项目利用纳米组装方法在微观尺度上设计、组装并构筑核壳结构NiCoPd@GO催化剂,实现催化的多功能性。通过氢化燃烧及球磨将其与镁复合获得纳米镁基复合材料,重点研究NiCoPd@GO对材料吸放氢热力学和动力学性能的协同催化效应;采用X射线衍射、红外光谱仪分析物相结构;利用透射电镜观察微观形貌,研究核壳结构在镁颗粒界面的微观特征;采用压力-组分-温度测试储氢性能;利用同步辐射X射线衍射技术,研究核壳结构金属在吸放氢过程中相结构的动态转变过程,建立微观组织与吸放氢循环稳定性之间的模型,揭示氢化相形核长大和分解内在反应机理,获得高活性、高容量、低温放氢的镁基储氢材料。
英文摘要 Mg-based materials are a very promising candidate for hydrogen storage. However, its application is severely restricted by its high thermodynamic stability and sluggish hydrogen sorption-desorption kinetics. Compounding by adding carbon and transition metal elements has been adopted to improve the performance of Mg-based materials for hydrogen storage to resolve urgently these above problems. Graphene is widely used as catalyst support and has a spillover effect on the hydrogen. Transition metals are added to reduce MgH2 dissociation energy barrier, and increase the reactive sites during the process of absorption and desorption hydrogen. In the present work, core-shell structured NiCoPd@GO was designed, assembled and constructed by the assembly nanotechnology to achieve the catalytic versatility. Mg-based materials were prepared by introducing core-shell structured NiCoPd@GO catalyst to the process of hydriding combustion synthesis followed by mechanical milling. The synergistic catalytic effects of core-shell structured NiCoPd@GO catalyst on the hydrogen sorption-desorption thermodynamics and kinetics and cyclic stability of Mg-based materials are mainly studied. The phases structure of the hydrogenated and dehydrogenated samples are studied by X-ray diffraction, Fourier transform infrared spectroscopy, the morphologies of the samples are observed by a transmission electron microscopy by focusing on the microstructual characteristics of the interface between the Mg particles and the catalysts. The hydrogen storage performance and hydrogen absorption-desorption rate are studied by using the pressure-composition-temperature. With an in-situ synchrotron radiation X-ray diffraction the phase transformation mechanisms and catalytic effects during hydrogen absorption-desorption process are revealed. The relationship between the microstructures and cycle stability of hydrogen absorption-desorption is established. The aim of the project is to obtain Mg-based hydrogen storage materials with a high activity, high capacity and the lower hydrogen desorption temperature.
结题摘要

成果

序号 标题 类型 作者

关于我们| 网站声明| 服务条款| 联系方式| RSS| 中国科学报社 京ICP备14006957 京公网安备110402500057号
Copyright @ 2007- 中国科学报社 All Rights Reserved
地址:北京市海淀区中关村南一条乙三号   电话:010-62580783