当前位置:科学网首页 > 基金首页 > 化学氧键增强高容量合金化钠电复合负极材料的构筑与储钠机理研究

国家自然科学基金项目查询

化学氧键增强高容量合金化钠电复合负极材料的构筑与储钠机理研究

批准号51602048 学科分类无机非金属能量存储材料 ( E021002 )
项目负责人吴兴隆 负责人职称副教授 依托单位东北师范大学
资助金额21.00
万元
项目类别青年科学基金项目 研究期限2017 年 01 月 01 日 至
2019 年 12 月 31 日
中文主题词钠离子电池;合金化负极;石墨烯;微纳结构;高容量
英文主题词sodium ion batteries;alloying anode;graphene;micro/nanostructure;high capacity

摘要

中文摘要 钠离子电池(SIB)的快速发展和潜在价格优势使其成为了电化学储能领域新的研究热点和重点。元素周期表中IVA和VA族的单质材料,是SIB高容量负极的优秀备选材料,具有重要的研究价值。针对其中的M(M = Sb、Sn和Si)单质,本项目拟在前期石墨烯(G)基导电网络、预留空间和稳定化表界面设计的基础上,重点研究G与纳米颗粒M间化学氧键M-O-G的可控构筑及其对钠电性能的提升机理。在该设计中,G基导电网络和预留空位,可有效改善体积效应导致的导电网络失效、SEI膜过厚持续生长和电极龟裂等问题,而M-O-G和稳定化表界面则能防止纳米颗粒M的动态聚集与G片层的重新堆叠,有效实现钠化/去钠化时二者的动态稳定化,最优化其钠电性能。此外,在可控制备基础上,将借助各类(非)原位表征技术,探明各结构特征改善储钠性能的科学规律,深入研究化学氧键的作用机理,认识科学本质,为开发高性能SIB奠定科学和物质基础。
英文摘要 Recently, sodium ion batteries (SIBs) have been drawn much attentions due to their numerous advantages, such as abundant sodium resources, low-cost and environmental benignity, making them be a new research focus of energy storage. Among the electrode materials of SIBs, the elemental materials of Groups IVA and VA in the Periodic Table of Elements should be one class of important anode materials with high specific capacity. However, they usually cannot exhibit their superior electrochemical properties due to the tremendous volumetric changes during cycling, as well as the resulted huge stress, unstable surface/interface and invalidation of conductive networks. In this proposal, we plan to improve their Na-storage performances by constructing chemical M-O-G bonds (where M is the typical Sb, Sn and Si, and G represents conductive graphene-based networks) between M nanoparticles and G nanosheets in addition to our previous research outputs of G-based network, efficient voids and stable surface/interface. The designed nanohybrids can be abbreviated as (M-O-G/□)@SL, in which □ and SL represents the voids and stabilized layers (SL) respectively. When used as anode for sodium ion batteries, while the graphene-based network and reserved voids can prevent the invalid of conductive network, the continuous growth of surface electrolyte interphase (SEI) and the cracking of electrode, the M-O-G bonds and stabilized surface have the abilities of avoiding the dynamic aggregation of active metal nanoparticles and restacking of graphene nanosheets, which will dynamically stabilize the sodiation/desodiation processes and hence optimize the Na-storage properties. In addition, we will also fully evaluate the electrochemical properties of the as-prepared nanohybrids by employing various in(ex)-situ technologies when used as anode materials for SIBs, and further obtain the scientific relationships and rules between nanostructures and electrode kinetics, ionic/electronic transportations, characteristics of interfaces. After finished this project, we can not only improve the electrochemical properties of the related high-capacity anode materials, but also promote the rapid development of SIB. Therefore, the present project will lay the scientific and material foundation of high-performance SIBs, making it be very important scientifically and practically.
结题摘要

成果

序号 标题 类型 作者

关于我们| 网站声明| 服务条款| 联系方式| RSS| 中国科学报社 京ICP备14006957 京公网安备110402500057号
Copyright @ 2007- 中国科学报社 All Rights Reserved
地址:北京市海淀区中关村南一条乙三号   电话:010-62580783